Простейшая модель "хищник-жертва"

 
Рассмотрим математическую модель совместного существования двух биологических видов (популяций) типа "хищник - жертва", называемую моделью Вольтерра - Лотки. Впервые она была получена А.Лоткой (1925 г.), который использовал для описания динамики взаимодействующих биологических популяций. Чуть позже и независимо от Лотки аналогичные (и более сложные) модели были разработаны итальянским математиком В. Вольтерра (1926 г.), глубокие исследования которого в области экологических проблем заложили фундамент математической теории биологических сообществ или так называемой математической экологии.
Пусть два биологических вида совместно обитают в изолированной среде. Среда стационарна и обеспечивает в неограниченном количестве всем необходимым для жизни один из видов, который будем называть жертвой. Другой вид - хищник также находится в стационарных условиях, но питается лишь особями первого вида. Это могут быть караси и щуки, зайцы и волки, мыши и лисы, микробы и антитела и т. д. Будем для определенности называть их карасями и щуками.
Итак, караси и щуки живут в некотором изолированном пруду. Среда предоставляет карасям питание в неограниченном количестве, а щуки питаются лишь карасями. Обозначим

у - число щук,

х - число карасей.

Со временем число карасей и щук меняется, но так как рыбы в пруду много, то не будем различать 1020 карасей или 1021 и поэтому будем считать х и у непрерывными функциями времени t. Будем называть пару чисел (х, у) состоянием модели.
Попробуем из самых простых соображений найти, как меняется состояние (х, у). Рассмотрим dx/dt - скорость изменения численности карасей. Если щук нет, то число карасей увеличивается и тем быстрее, чем больше карасей. Будем считать, что эта зависимость линейная : dx/dt ~ a1 x, причем коэффициент a1 зависит только от условий жизни карасей, их естественной смертности и рождаемости.
Скорость изменения dy/dt числа щук (если нет карасей), зависит от числа щук y. Будем считать, что dy/dt ~ -a2 y . Если карасей нет, то число щук уменьшается (у них нет пищи) и они вымирают.
В экосистеме скорость изменения численности каждого вида также будем считать пропорциональной его численности, но только с коэффициентом, который зависит от численности особей другого вида. Так, для карасей этот коэффициент уменьшается с увеличением числа щук, а для щук увеличивается с увеличением числа карасей. Будем считать эту зависимость также линейной. Тогда получим систему из двух дифференциальных уравнений:
dx/dt = a1 x - b1 yx

dy/dt = - a2 y + b2 yx
Эта система уравнений и называется моделью Вольтерра-Лотки. Числовые коэффициенты a1, a2, b1, b2 - называются параметрами модели. Очевидно, что характер изменения состояния (x, y) определяется значениями параметров. Изменяя эти параметры и решая систему уравнений модели, можно исследовать закономерности изменения состояния экологической системы.
С помощью программы MATLAB решим систему уравнений Лоттки-Вольтерра.

 


На данном рисунке мы наблюдаем решение. В зависимости от начальных условий они разные, чему отвечают разные цвета траекторий. На следующем рисунке мы наблюдаем те же самые решения, только добавлена ось t (т.е. наблюдаем зависимость от времени).
Программу MATLAB можно найти по адресу:

http://www.mathworks.com/


 

 

 

 


Литература:

1. Eusebius Doedel. Lecture notes on Numerical analysis of bifurcation problems. Hamburg, march, 1997


АРХИВ ДИНАМИЧЕСКИХ СИСТЕМ
ДВУМЕРНЫЕ СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
ТРЕХМЕРНЫЕ СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
ЧЕТЫРЕХМЕРНЫЕ СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
ОДНОМЕРНЫЕ ОТОБРАЖЕНИЯ
ДВУМЕРНЫЕ ОТОБРАЖЕНИЯ


Данная страница является частью дипломной работы студентки механико-математического факультета РГУ Андреевой О.